Modeling Censored Data Using Mixture Regression Models with an Application to Cattle Production Yields
نویسندگان
چکیده
This research develops a mixture regression model that is shown to have advantages over the classical Tobit model in model fit and predictive tests when data are generated from a two step process. Additionally, the model is shown to allow for flexibility in distributional assumptions while nesting the classic Tobit model. A simulated data set is utilized to assess the potential loss in efficiency from model misspecification, assuming the Tobit and a zero-inflated log-normal distribution, which is derived from the generalized mixture mdoel. Results from simulations key on the finding that the the proposed zero-inflated log-normal model clearly outperforms the Tobit model when data are generated from a two step process. When data are generated from a Tobit model, forecats are more accurate when utilizing the Tobit model. However, the Tobit model will be shown to be a special case of the generalized mixture model. The empirical model is then applied to evaluating mortality rates in commercial cattle feedlots, both independently and as part of a system including other performance and health factors. This particular application is hypothesized to be more apropriate for the proposed model due to the high degree of censoring and skewed nature of mortality rates. The zero-inflated log-normal model clearly models and predicts with more accuracy that the tobit model.
منابع مشابه
Estimation of genetic parameters for production traits and somatic cell score in Iranian Holstein dairy cattle using random regression model
In this study test-day records of milk (kg), fat (g), and protein (g) yields, somatic cell score (SCS, cells/ML) collected by Animal Breeding Center of Iran during 2007 and 2009 were used to estimate genetic parameters using random regression model. Models with different order of Legendre polynomials were compared using Bayesian information criterion (BIC).For milk, fat yield and SCS genetic an...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملMarginal Mixture Analysis of Correlated Bounded-Response Data with an Application to Ultrasound Risk Assessment
Data with bounded responses are common in many areas of application. Often the data are bounded below by zero with a substantial portion of zeros, so ordinary generalized linear models fail. Three methods in the literature for modeling zero-inflated data are left-censored regression models, two-part models, and latent mixture models. We develop a general class of mixture models that unifies and...
متن کاملTracking Interval for Doubly Censored Data with Application of Plasma Droplet Spread Samples
Doubly censoring scheme, which includes left as well as right censored observations, is frequently observed in practical studies. In this paper we introduce a new interval say tracking interval for comparing the two rival models when the data are doubly censored. We obtain the asymptotic properties of maximum likelihood estimator under doubly censored data and drive a statistic for testing the ...
متن کاملBayesian Nonparametric Modeling in Quantile Regression
We propose Bayesian nonparametric methodology for quantile regression modeling. In particular, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed nonparametric prior probability models allow the data to drive the shape of the error density and thus provide more reliable predictive inference than models based on par...
متن کامل